Том 18 (2015)


Математическая модель динамики микрополярных упругих тонких балок. Свободные и вынужденные колебания

А.А. Саркисян1, С.О. Саркисян1

1Гюмрийский государственный педагогический институт им. М. Налбандяна, Гюмри, 3126, Армения

 

УДК 539.3

В работе развит метод гипотез для построения математической модели микрополярных упругих тонких балок, основанный на асимптотических свойствах решения в тонком прямоугольнике начально-краевой задачи плоской микрополярной теории упругости с независимыми полями перемещений и вращений. Построена прикладная модель динамики микрополярных упругих тонких балок, в которой полностью учитываются поперечные сдвиговые и родственные им деформации. На основе построенной модели рассмотрены задачи о свободных и вынужденных колебаниях микрополярной балки, определены частоты и формы собственных колебаний, амплитуды вынужденных колебаний и условия резонанса. Приведены результаты численных расчетов, показывающие специфические особенности собственных колебаний тонких балок. Показано, что в микрополярных тонких балках имеется собственная частота, которая практически не зависит от размеров тонкой балки, а зависит только от физических и инерционных свойств микрополярного материала. Показано, что для микрополярного материала есть большая возможность регулировать значения частот собственных колебаний балок. В результате возможно достижение значительного различия частот колебаний, что важно при изучении явления резонанса.

 


стр. 25 – 31

Образец цитирования:
А.А. Саркисян, С.О. Саркисян  Математическая модель динамики микрополярных упругих тонких балок. Свободные и вынужденные колебания // Физ. мезомех. - 2015. - Т. 18. - № 3. - С. 25-31


вернуться